激光医学作用是什么意思(激光的医学作用)
激光的医学作用
激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度高)。
1 单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。而激光发射的各个光子频率相同,因此激光是最好的单色光源。 由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。
2 相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。激光为我们提供了最好的相干光源。正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。
3 方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到月球上形成的光斑直径仅有1公里左右。而普通光源发出的光射向四面八方,为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯,如将其光投射到月球上,光斑直径将扩大到1 000公里以上。 激光束的方向性好这一特性在医学上的应用主要是激光能量能在空间高度集中,从而可将激光束制成激光手术刀。另外,由几何光学可知,平行性越好的光束经聚焦得到的焦斑尺寸越小,再加之激光单色性好,经聚焦后无色散像差,使光斑尺寸进一步缩小,可达微米级以下,甚至可用作切割细胞或分子的精细的“手术刀”。
4 亮度高:激光的亮度可比普通光源高出1012-1019倍,是目前最亮的光源,强激光甚至可产生上亿度的高温。激光的高能量是保证激光临床治疗有效的最可贵的基本特性之一。利用激光的高能量还可使激光应用于激光加工工业及国防事业等。
激光治疗的作用有哪些
(1)亮度高由于激光的发射能力强和能量的高度集中,所以亮度很高,它比普通光源高亿万倍,比太阳表面的亮度高几百亿倍。
亮度是衡量一个光源质量的重要指标,若将中等强度的激光束经过会聚,可在焦点出产生几千到几万度的高温。
(2)方向性好激光发射后发散角非常小,激光射出20公里,光斑直径只有20——30厘米,激光射到38万公里的月球上,其光斑直径还不到2公里。
(3)单色性好光的颜色由光的不同波长决定,不同的颜色,是不同波长的光作用于人的视觉的不同而反映出来。
激光的波长基本一致,谱线宽度很窄,颜色很纯,单色性很好。由于这个特性,激光在通信技术中应用很广。
(4)相干性好相干性是所有波的共性,但由于各种光波的品质不同,导致它们的相干性也有高低之分。
普通光是自发辐射光,不会产生干涉现象。激光不同于普通光源,它是受激辐射光,具有极强的相干性,所以称为相干光。
激光在医学方面的应用有哪些
答:激光是一种激光器材受到电击力的作用发射出来的一种光,和平时讲的看见的日光和灯光这种光不是一类光,由于频率、振动方向、相位高度一致,所以被称为相干光,具有定向发光、亮度极高、颜色极纯、能量密度极大的特点,经过多年发展,激光现在已经被广泛应用在生活、工业、军事、医疗科研等领域。
激光的特性及医学应用
什么是X光? X光是一有能量的电磁波或辐射。当高速移动的电子撞击任何形态的物质时,X光便有可能发生。X光具有穿透性,对不同密度的物质有不同的穿透能力。在医学上X光用来投射人体器官及骨骼形成影象,用来辅助诊断。 X光到底是怎麼产生的?原来当高速运动的电子撞击重原子核时(例如钨元素)就会产生X射线,在医学上的用途非常大。另外,当高能轨道的电子跳回低能轨道时,也会产生X射线,可应用在金属元素的定性和定量分析工作上。激光是原子受激发射而辐射的一种光。激光是一种新型的光源,它和普通光源的区别在于发光的微观机制不同。普通光源的发光是以自发辐射为主,各个发光中心发出的光波无论方向、位相或者偏振态都各不相同。激光的发光则是以受激辐射为主,各个发光中心发出的光波都具有相同的频率、方向、偏振态和严格的位相关系。由于这些差别,激光具有强度高,单色性好、相干性好和方向性好等几个特点。
激光在医疗方面有什么作用应用
我想应该有这几项重大事件:
1、1873年阿贝提出的显微镜成像理论。1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜。显微镜的发明为人类揭开微观世界打开了一扇门!以至于对医学、物理、化学都产生了巨大影响。
2、透镜,(凸凹)面镜,继而的几何光学的成就,促进成像技术进一步发展,为太空探索奠定基础,也给人类生活带来更多色彩。(这个好像不是事件,参考吧)3、1905年,爱因斯坦运用量子论解释了光电效应。对光的认识更加深入,依此发展起来的电视技术、太阳能发电技术也对现代科学技术影响很大。4、1960年,激光技术出现。个人觉得还是显微镜发明和光电效应对对现代科学技术影响最大。都是个人认识,仅供参考。
激光在医疗方面的作用
医学物理学是运用物理学的理论、方法和技术,研究有生命的对象,并以在医学领域方面的实际应用和理论研究为目的。其中包括热医学、运动医学、激光医学、超声医学、电子医学、磁医学、微波医学、核医学等。
它近期发展迅速,其原因之一是科学发展本身的需要,二是物理学自身的特点。生命科学的发展正从宏观走向微观,从定性走向定量,从细胞水平走向分子水平,从手工的、机械的、接触型的测试手段走向自动化、智能化、非接触型的测试手段。
而物理学既有系统的定量的理论,又有精密的先进的实验方法,故而在生命科学发展中,它具有重要作用。
激光在医学领域的应用
医学物理学是把物理学的原理和方法应用于人类疾病预防、诊断、治疗和保健的交叉学科。
该学科以放射治疗、医学影像、核医学以及其他非电离辐射,如超声、微波、射频、激光等在医学中的应用及应用过程中的质量保证、质量控制和辐射防护与安全等为主要内容。
医学物理师和临床医生配合,工作在肿瘤放射治疗、医学影像、核医学以及其他非电离辐射,如超声、核磁、激光等各个领域,从事临床诊断和治疗的物理和技术支持、教学和科研工作,特别是在诊疗新技术的开发和应用、质量保证和质量控制以及保健物理和辐射防护等方面起着极其重要的作用。
.光导纤维做成的各种内窥镜已淘汰了各种刚性导管内镜,计算机和X射线断层扫描术(X-CT)、超声波扫描仪(B超)和核磁共振断层成像(MRI)、正电子发射断层显像术(PET)等的制成和应用,不仅大大地减少了病人的痛苦和创伤,提高了诊断的准确度,而且直接促进了现代医学影像诊断学的建立和发展,使临床诊断技术发生质的飞跃.
激光在医学上的作用
激光技术发明与用途,接下来小伟伟给大家普及下相关知识!
用激光进行切割和焊接,是由美国物理学家西奥多·哈罗德·梅曼在1960年发明的。激光( Laser)是由 Light Amplification by StimulateEmission of Radiation的各单词头一个字母组成的缩写词,意思是“通过受激发射光扩大”。激光是工业生产医学领域一项革命性的发明。
二战后,当微波技术与雷达技术以及无线电天文学发生有趣联系的时候,美国人査尔斯·哈德·汤斯试图制造出放大的微波射线。他把氨分子通过加热达到一个高度能量水平,然后用弱微波射线轰击,氨分子释放出强烈的射线,并且通过轰击回归到原有的能量水平。
汤斯在1953年发明了微波放大器。同时苏联科学家普罗克霍洛夫和巴索也发现了微波放大器的原则。五年后的1958年,汤斯与阿瑟·伦纳德·肖洛制造出了世界上第一台微波激射器。在这些实验的基础上,梅曼于1960年发明了第一台真正的激光发射器。
在医学治疗领域,早期的激光技术仅在人的体表应用,后来,激光可以在皮肤下的某一点聚焦。随着光导纤维技术的发展,激光开始应用于外科手术。这种手术的优点就是大部分情况下不用开刀,手术时间和术后恢复期也大大缩短。 激光技术的发明与应用,生活中到处都有它的存在!
丰富的技术天赋
今天,许多机器或工业生产流程都离不开激光。从纺织品到钻石,几乎所有的材料都可以通过激光在电脑程序的控制下快速、精准地钻孔、切割。激光可以焊接金属和合成材料,可以使金属更加坚硬,还能够像雷达一样进行远程扫描和精确测量。激光数据存储器的读取,如音乐CD就建立在这个原则之上。
在光学信息技术领域,激光通过光纤电缆来传播信息。在激光打印机和照片复印机里,激光東可以书写文字或绘制图片。在实验室里激光可以辅助材料分析和制造化学剂。激光技术还应用于现代武器系统中。
全息摄影
1948年,丹尼斯·盖伯发明的全息摄影能够传递被摄物体反射光波中的全部信息。这些成像不是通过普通的光得到和传递的,它们必须是连续的,即所有单束光的光波必须有同样的振幅,激光就具有这样的特征,因此激光的发明也使全息摄影技术取得了突破。
激光手术
激光手术有三种优点比起手术刀激光刀可以在更小的空间工作,并且更加精准、无痛苦。激光刀不仅可以切割肌体组织,还可以连接打开的血管。它可以在肌体表面工作,也可以到达身体内部。像其它光一样,激光也可以聚焦,比如聚焦在视网膜、肿瘤或肾结石上。
在肿瘤治疗过程中,二氧化碳激光可以使肿瘤蒸发。氩气激光可以应用在眼部手术中。氦气激光可以通过加热疼痛的肌体组织来治疗风湿。
激光技术的重要应用领域
染料激光
1966年,美国人皮特·索罗金和德国人弗里茨·舍夫相互独立发明了染料激光,它可以产生极短闪光。
激光秀
1970年,世界上第一次舞台激光表演是在慕尼黑的歌剧节上,随后激光秀便成为一种独立的艺术形式。
激光数据传送
1970年,利用光缆进行激光数据传送表明光纤技术达到了一个很高的水平。
CD和激光打印机
1972年、1975年,1972年第一张激光唱片CD面市,三年后美国IBM公司首次制造出激光打印机。
我是小伟伟咱们下期见!拜了个拜……
激光的医疗作用有哪些
1人体器官或系统的机能以及正常或异样过程的物理解释;
2、人体组织的物理性质以及物理因子对人体的作用;
3、人体内生物电、磁、声、光、热、力等物理现象的认识;
4、物理仪器(显微镜、摄谱仪、X线机、CT、同位素和核磁共振仪等)和物理测量技术的医学应用.
激光在医学上已广为应用,它是利用了激光在活体组织传播过程中会产生热效应、光化效应、光击穿和冲击波作用.紫外激光已用于人类染色体的微切割,这有助于探索疾病的分子基础
磁共振断层成像是—种多参数、多核种的成像技术.目前主要是氢核( H)密度弛豫时间T 、T 的成像.其基本原理是利用一定频率的电磁波向处于磁场中的人体照射,人体中各种不同组织的氢核在电磁波作用下,会发生核磁共振,吸收电磁波的能量,随后又发射电磁波
激光的医学作用是什么
激光属于普通电磁波。
电磁辐射量与温度有关,通常高于绝对零度的物质或粒子都有电磁辐射,温度越高辐射量越大,但大多不能被肉眼观察到。
频率是电磁波的重要特性。按照频率的顺序把这些电磁波排列起来,就是电磁波谱。电磁辐射由低频率到高频率主要分为:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。人眼可接收到的电磁波,称为可见光(波长380~780nm)。
激光的医疗作用
激光行业是精密加工。
我国激光市场主要分为激光加工设备、光通信器件与设备、激光测量设备、激光器、激光医疗设备、激光元器件等,其中激光加工设备占据了大部分市场。
随着“中国制造2025”行动纲领和“一带一路”战略的深入实施,制造业对自动化,智能化生产模式的需求日益增长,激光技术是现代高端制造前沿技术,在产业转型升级过程中将扮演重要角色,激光加工应用也从一开始的食品、纺织、电子等轻工业领域,拓展至汽车、船舶、航天、航空、高铁等重工业领域;除此以外,中国的激光市场还延伸至通信、显示、医疗、整形美容、增材制造、数据传感器等新兴领域。